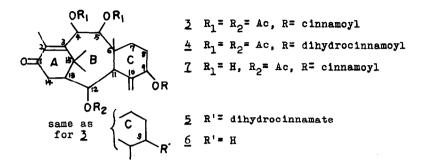

TAXININE

M.Kurono, Y.Nakadaira, S.Onuma, K.Sasaki and K.Nakanishi Department of Chemistry, Tohoku University, Sendai, Japan (Received 30 September 1963)

Several structural studies have already been reported¹⁻⁵ on taxine and taxinine(desdimethylaminotaxine) isolated from the leaves of the yew, <u>Taxus baccata</u> L. subsp. cuspidata Pilg. et Zucc. On the other hand, O-cinnamoyltaxicin-I,-II^{*}and-III have been isolated from the European yew, <u>Taxus baccata</u> L.⁶and recently⁷, two alternatives structures, <u>1</u> and <u>2</u> have been forwarded by Lythgoe and co-workers; their evidence is based on the periodate cleavage of the molecule into two halves.



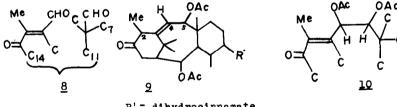
R : -COCH=CH-C6H5

The evidence cited in this and the following communication on the Japanese taxinine allows one to establish its structure as $\underline{3}$.

* As stated in reference 7, "taxinine" is probably 0-cinnamoyltaxicin-II triacetate.

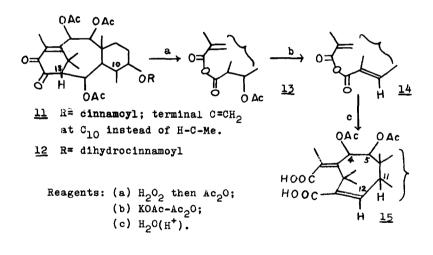
2153

Taxinine, $C_{35}H_{42}O_9$, m.p. 264-5°, M.W. 606.7, found, 611+10 (X-ray)^{*}, 602 (ultracetrifuge sedimentation equilibrium)^{**}, has the following spectroscopic properties: v_{cm}^{KBr} 1745 (acetates) 1720, 1644 (cinnamate), 1674 (ketone), 911 (C=CH₂); λ_{max}^{MeOH} 218 223, 280 mµ (log ε 4.28, 4.22, 4.45); δ_{ppm}^{CDC1} ^{***} 0.95, 1.18, 1.79, 2.30 (all singlets, tertiary methyls), 2.06, 2.06, 2.08 (acetates), 1.6-3.2 (overlapping peaks assigned to C₇-, C₈-, C₁₄-methylenes and C₁₃-methine), 3.44 (dif.d., J=7 cps, C₁₁-H) 4.88 (1H dif.s., =CH₂), 5.37 (2H dif.s., =CH₂ and C₉-H), 5.88 (q., J=7 and 2 cps, C₁₂-H), 5.90 and 6.06 (AB type q., J=10 cps C₄- and C₅-H), 6.3-7.8 (trans-cinnamate protons). Hydrogenation of taxinine in acetone over Pd/C afforded besides the dihydro-and tetrahydro-derivatives, <u>4</u>, m.p. 246-7° and <u>5</u>, m.p. 279°,

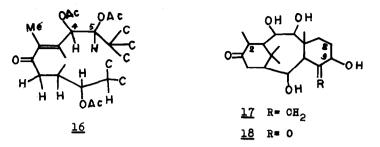

* Kindly measured by Dr. T.Kanzawa, Takeda Chemical Industries

^{**} Kindly measured by Dr. N.Iso, Department of Chemistry, Tokyo Kyoiku University.

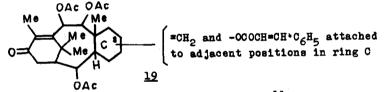
^{***} Assignments are based on nuclear magnetic double resonance (NMDR) data given in the succeeding communication. Abbreviations: dif., diffuse; s., singlet; d., doublet; q., quartet.

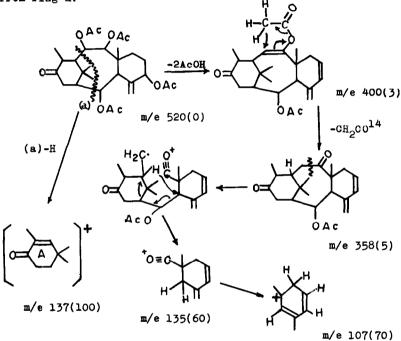

 δ_{ppm}^{CDC1} 3 0.69 (d., J=7 cps, C₈-Me), a small amount of dihydrocinnamic acid and the hydrogenolysed product <u>6</u>, m.p. 196-7°. Formation of the last two compounds indicated the presence of an allylic cinnamoyl group. Further, the hydrogenolysis product <u>6</u> contains an unsaturated ketone, v_{cm}^{CHC1} 3 1680 and 1661 (shoulder), but the λ_{max}^{MeOH} at 272 mµ (log ε 3.78) suggested that the group was present in an unusual environment.

Methanolysis of taxinine with sodium methoxide⁸ gave dideacetyltaxinine 7, $C_{31}H_{38}O_7$, m.p. 216°, which gave taxinine upon reacetylation, and an acetonide, $C_{34}H_{42}O_7$, m.p. 192-3°, when treated with $Me_2CO-HCIO_4^{-9}$. Methanolysis of tetrahydrotaxinine 5 followed by periodate oxidation afforded the dialdehyde 8, $\delta_{ppm}^{CDCl_3}$ 9.37 (s) and 10.25 (s), the λ_{max}^{MeOH} at 210 and 259 mµ corresponding to that of an enedione. Reduction of tetrahydrotaxinine 5 with Zn-AcOH under reflux led to deacetoxytetrahydroisotaxinine 9, $C_{33}H_{44}O_7$ °CH₃OH, m.p. 78°, λ_{end}^{MeOH} 208 (log ε 4.03), $v_{cm}^{CHCl_3}$ 1738 (esters), 1708 (ketone), $\delta_{ppm}^{CDCl_3}$ 1.78 (d., J=9.4 cps, C_2 -Me), 5.09, 5.66 (AB type q., J=11.4 cps). The evidence cited in this paragraph suggests part structure 10.



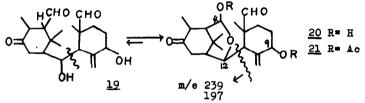
R'= dihydrocinnamate


Selenium dioxide oxidation of taxinine $\underline{2}$ gave the nonenolizable α -diketone, oxotaxinine $\underline{11}$, $C_{35}H_{40}O_{10}, \underline{2}O_{2}H_{5}OH, \underline{2}H_{2}O$, m.p. 220°(dec.), λ_{max}^{MeOH} 218 and 284 mµ (log ε 4.30 and 4.37); v_{cm}^{CHCl} 3 1715 and 1698 (α -diketone); δ_{ppm}^{CDCl} 3, a clear one-proton doublet at 2.88 (J=3.0 cps) due to C_{13} -H. Tetrahydrotaxinine $\underline{5}$ similarly gave the corresponding oxo-derivative $\underline{12}$, $C_{35}H_{44}O_{10}O_{2}C_{2}H_{5}OH, \underline{1}H_{2}O$, m.p. 279-280°. The reaction sequence outlined below finally yielded the dicarboxylic acid $\underline{15}$, m.p. 243-4°, λ_{end}^{MeOH} 209 mµ (log ε 4.26). Since in acid $\underline{15}$ the C_{4} - C_{5} α -diacetoxy group is retained (NMR: AB type quartet at 5.03 and 6.02, J=13 cps, in acetone), formation of the α , β -unsaturated acid involves β -elimination of the third acetoxyl group; furthermore, a one-proton doublet at 6.77 ppm (J=1.3 cps, C_{12} -H in acetone) indicates the presence of an additional adjacent proton, C_{11} -H. Thus, <u>10</u> can be extended to <u>16</u>.



When taxinine $\underline{2}$ was reduced with LiAlH_4 in boiling tetrahydrofuran, an unusual 1,4-reduction¹⁰ occurred to give taxinol⁵ $\underline{17}$, m.p. 254-5°, $v_{\text{cm}}^{\text{KBr}}$ 1685, $\delta_{\text{ppm}}^{\text{pyridine}}$ 1.29 (d., J=6.6 cps, C_2 -Me), the ozonolysis of which afforded formaldehyde and noroxotaxinol $\underline{18}$, m.p. 216-7°, $v_{\text{cm}}^{\text{KBr}}$ 1707. Consideration of the fact that the taxinine NMR exhibits three methyl singlets in addition to the olefinic methyl leads to expression $\underline{19}$.

Nuclear magnetic double resonance experiments¹¹ revealed that the C_{11} -H doublet is long-range coupled to one of the terminal methylene protons (4.88 ppm in taxinine), and that the proton alpha to the cinnamate group is weakly coupled to an adjacent methylene group (C_8 -methylene). This establishes the structure of taxinine as 3, which is corroborated by NMR¹¹ and mass spectroscopic results. The strained bicyclic A/B system is responsible for the red shift¹² in the UV absorption of the C_1 ketone in taxinine derivatives and the low $v_{C=0}$ ¹³ of taxinol derivatives. Taxinine


The mass spectra of taxinol and derivatives^{*}, which were characterized by a conspicuous peak at m/e 137 arising from a ring A fragment provided further support for the derived structure. In tetraacetylnoroxotaxinol, where the $C=CH_2$ is replaced by C=O, the peaks shown below for tetraacetyltaxinol are shifted two mass units higher; thus the m/e 135 peak is also shifted to 137 and overlaps the m/e 137 peak originating from ring A.

Figures in () denote % intensity relative to base peak.

* The low volatility of taxinine derivatives made them unsuitable for mass spectroscopic measurements. No.30

Finally, periodate oxidation of taxinol <u>17</u> gave rise to secotaxinol, m.p. 109-110°, an equilibrium mixture in CDCl₃ (12.5 % solution) of <u>19</u> (25 %) and <u>20</u> (75 %) as indicated by the relative intensities of aldehydic protons at δ 9.33 ppm (singlet) and 9.75 ppm (doublet, J=4.3 cps). Acetylation of secotaxinol(<u>19</u>=20) resulted in the hemiacetal diacetate <u>21</u>, m.p. 108-9°, $\delta_{ppm}^{CDCl_3}$ 3.89 (q., J=2.5 and 7.5 cps, C₁₂-H), 4.86 and 5.10 (C=CH₂), 5.61 (q., J=6 and 12 cps, C₉-H), 6.17 (d., J=6 cps, C₄-H) and 9.24 (s., -CHO). The high mass region of the mass spectra of secotaxinol <u>20</u> (or <u>19</u>) and its diacetate <u>21</u> was revealing in that rather strong peaks were observed at m/e 197 in the former, and at 239 and 197 (- m/e 239 minus -CH₂CO) in the latter; these peaks confirm the C₄-C₅ seco structures assigned to these compounds.

Professor S.Uyeo and co-workers, Kyoto University, have arrived at the same conclusion regarding the structure of taxinine¹⁵.

<u>Acknowledgements</u> We are grateful to Professor C. Djerassi and Dr. H. Budzikiewicz, Stanford University, for measurements of mass spectra.

REFERENCES

- 1. T.Takahashi, <u>J. Pharm. Soc. Japan</u>, <u>51</u>, 401 (1931)
- H.Kondo and U.Amano, <u>J. Pharm. Soc. Japan</u>, <u>42</u>, 1074 (1922)
 H.Kondo and T.Takahashi, <u>J. Pharm. Soc. Japan</u>, <u>45</u>, 861 (1925).

- 3. T.Takahashi, <u>J. Pharm. Soc. Japan</u>, <u>52</u>, 68 (1932). T.Takahashi, <u>J. Pharm. Soc. Japan</u>, <u>54</u>, 664 (1934).
- 4. H.Kondo and J.Taga, <u>Ann. Rept. ITSUU Lab.</u>, <u>9</u>, 16, 20 (1958).
 H.Kondo, J.Taga and M.Takahashi, <u>Ann. Rept. ITSUU Lab.</u>, <u>10</u>,
 9 (1959); J.Taga, <u>Chem. Pharm. Bull. (Japan)</u>, <u>8</u>, 936 (1960).
 J.Taga, <u>Ann. Rept. ITSUU Lab.</u>, <u>11</u>, 1 (1960).
- 5. T.Takahashi, K.Ueda, R.Oishi and K.Minamoto, <u>Chem. Pharm.</u> <u>Bull. (Japan)</u>, <u>6</u>, 728 (1958); T.Takahashi, K.Ueda, Y.Maki and K.Minamoto, <u>Chem. Pharm. Bull. (Japan)</u>, <u>8</u>, 372 (1960); S.Uyeo, K.Ueda, Y.Yamanoto, N.Hazama and Y.Maki, <u>J. Pharm.</u> <u>Soc. Japan</u>, <u>82</u>, 1081 (1962).
- 6. E.Graf, Angew. Chem., 68, 249 (1956).
- 7. J.N.Baxter, B.Lythgoe, B.Scales, S.Trippett and B.K.Blount, <u>Proc. Chem.</u>, 9 (1958); J.N.Baxter, B.Lythgoe, B.Scales, R.M.Scrowton, S.Trippett and D.Wray, <u>J. Chem. Soc.</u>, 2972 (1962).
- 8. G.Zemplen and A.Kuns, <u>Ber.</u>, <u>56</u>, 1705 (1923).
- 9. S.Bernstein and E.W.Cantrall, J. Org. Chem., 26, 3560 (1961).
- G.Stork and F.H.Clarke, Jr., <u>J. Am. Chem. Soc.</u>, <u>83</u>, 3120 (1961).
- 11. Following communication.
- 12. G.Büchi, R.E.Erickson and N.Wakabayashi, <u>J. Am. Chem. Soc.</u>, <u>83</u>, 927 (1961).
- 13. W.I.Wechter and G.Slomp, <u>J. Org. Chem.</u>, <u>27</u>, 2550 (1962).
- K.Biemann, D.C.Dejongh and H.K.Schnoes, <u>J. Am. Chem. Soc</u>., <u>85</u>, 1763 (1963).
- 15. K.Ueda, S.Uyeo, Y.Yamamoto and Y.Maki, <u>Tetrahedron Letters</u> 2167 (1963).